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a b s t r a c t

User-provided textual tags of web images are widely utilized for facilitating image management and
retrieval. Yet they are usually incomplete and insufficient to describe the whole semantic content of
the corresponding images, resulting in performance degradations of various tag-dependent applications.
In this paper, we propose a novel method denoted as DLSR for automatic image tag completion via Dual-
view Linear Sparse Reconstructions. Given an incomplete initial tagging matrix with each row represent-
ing an image and each column representing a tag, DLSR performs tag completion from both views of
image and tag, exploiting various available contextual information. Specifically, for a to-be-completed
image, DLSR exploits image-image correlations by linearly reconstructing its low-level image features
and initial tagging vector with those of others, and then utilizes them to obtain an image-view recon-
structed tagging vector. Meanwhile, by linearly reconstructing the tagging column vector of each tag with
those of others, DLSR exploits tag-tag correlations to get a tag-view reconstructed tagging vector with the
initially labeled tags. Then both image-view and tag-view reconstructed tagging vectors are combined for
better predicting missing related tags. Extensive experiments conducted on benchmark datasets and real-
world web images well demonstrate the reasonableness and effectiveness of the proposed DLSR. And it
can be utilized to enhance a variety of tag-dependent applications such as image auto-annotation.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recently with the prevalence of social network and digital
photography, numberless images have been posted to various
photo sharing communities, e.g. Flickr. Apart from the shared
visual information, such large-scale and rapidly-increasing social
images are usually associated with user-provided textual tags for
describing their corresponding semantic content, which are widely
utilized for facilitating kinds of tag-based image applications like
text-based image retrieval, etc. However, as the manual labeling
process can be time-consuming and arbitrary, the user-provided
tags probably contain imprecise ones and are usually incomplete,
as also revealed in [1,2]. Fig. 1 gives an illustration of the user-pro-
vided tags with an exemplary image downloaded from Flickr. From
the illustration we can see that the user-provided tags may not
only contain misspelling or imprecise ones (e.g. ‘‘mtn’’), but also

miss other semantically related ones (e.g. ‘‘sea’’, ‘‘water’’, ‘‘sky’’
and ‘‘grass’’).

The imprecision and incompleteness of user-provided tags can
lead to performance degradations of various tag-dependent
applications. Taking tag-based image retrieval as an example,
imprecision of tags will lower the retrieval precision while incom-
pleteness will lower the recall. Therefore, in recent years, tag
refinement, including tag denoising and completion, has become
an attractive subject of many ongoing researches and has been
attracting much attention from both academia and industry. How-
ever, previous work on tag refinement, as referred to in related
work with details, focused more on denoising but less on comple-
tion. As our experiments will show, incompleteness of image tags
can bring serious negative effects to tag-dependent applications.
And thus we propose that tag completion still deserves further
attention and researches, and more effective tag completion meth-
ods are expected to be developed.

Given an incomplete initial tagging matrix, with each row
representing an image and each column representing a tag, tag
completion is to fill it up by identifying more correct associations
between images and tags. Specifically, each entry of the initial
tagging matrix is either 1 or 0, with 1 indicating that the
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corresponding image contains the corresponding tag and 0 other-
wise. Then tag completion is essentially to correct false 0 entries
into 1 entries.

In this paper, we propose a novel method denoted as DLSR to
perform automatic image tag completion via Dual-view Linear
Sparse Reconstructions. Specifically, given the initial tagging
matrix, the proposed DLSR completes it from both views of image
and tag, exploiting various available contextual information. For
any to-be-completed image, DLSR exploits image-image correla-
tions by linearly reconstructing its low-level image features and
initial tagging vector with those of others, under constraints of
sparsity. Then the obtained reconstruction weights are utilized
for obtaining an image-view reconstructed tagging vector. Mean-
while, by linearly reconstructing the tagging column vector of each
tag with those of others, DLSR exploits tag-tag correlations to get a
tag-view reconstructed tagging vector with the initially labeled
tags. Then both image-view and tag-view reconstructed tagging
vectors are normalized and combined with effective strategies in
the field of meta-search to predict the relevance of unlabeled tags
to the to-be-completed image. And those with higher relevance are
then selected and added.

Instead of performing global refinement for the initial tagging
matrix, DLSR performs tag completion via reconstructing each
image (i.e. row) and each tag (i.e. column) separately. And thus it
can be utilized to perform tag completion for an unseen image
(i.e. inductive method) or an existing dataset (i.e. transductive
method). Specifically, for an unseen image, DLSR only exploits
the completely or partially labeled images in the training set to
perform tag completion, and thus is used as an inductive method.
And for an existing dataset, DLSR performs tag completion for each
to-be-completed image in it with all other images, including other
to-be-completed images and the training images, since all the to-
be-completed images are already observed and also partially
labeled, which can probably provide extra helpful information. In
this case DLSR is used as a transductive method. DLSR is evaluated
with extensive experiments conducted on benchmark datasets and
real-world web images. Experimental results well demonstrate its
reasonableness and effectiveness. And it can be utilized for
enhancing a variety of tag-dependent applications like image
auto-annotation, etc.

The main contributions of our work can be summarized as
follows.

� We propose a novel effective tag completion method via dual-
view linear sparse reconstructions, considering and exploiting
various available contextual information.

� We propose to perform tag completion via reconstructing each
image and each tag separately, instead of performing global
refinement for the initial tagging matrix, which enables DLSR
to be used as either an inductive method or a transductive one.

This paper is an extension and improvement of our previous
work presented in [3]. And we enhance it to be more effective
and practical. Specifically, in image-view reconstruction, here we
propose to utilize the same reconstruction weights for concur-
rently reconstructing the low-level features and the initial tagging
vector of a to-be-completed image with those of others, in order to
simplify model tuning with less parameters while keeping similar
performance. Moreover, to prevent the reconstruction weights
from being dominating in only images containing an identical ini-
tial tagging vector to that of the to-be-completed image, which will
provide no information about the missing tags and thus make the
image-view reconstruction not work for tag completion, we intro-
duce a ‘‘diversity regularizer’’ in the objective function, as will be
elaborated later. Furthermore, to better combine the image-view
and the tag-view reconstructed tagging vectors, we propose to
treat both as the tag retrieval results from two distinct ‘‘search
engines’’, and resort to effective normalization and combination
strategies in the field of meta-search for performance improve-
ment. Experimental results demonstrate that the introducedmodel
enhancements here can generally help to gain performance
improvement for the proposed method.

The remainder of this paper is organized as follows. Section 2
gives an overview of related work. Section 3 elaborates on the pro-
posed DLSR, presenting formula details. Then detailed description
of experiments, including experimental settings, results and analy-
ses, is given in Section 4. And in Section 5 we investigate various
applications that DLSR can be used for. Finally we conclude the
paper in Section 6.

2. Related work

As tag completion is to add tags with higher relevance to a given
image, it would be natural to compare it with image auto-annota-
tion and tag recommendation. Image auto-annotation [4–10] is to
automatically and objectively associate unlabeled images with
semantically related tags. Feng et al. [4] proposed a generative
learning approach for auto-annotation based on multiple Bernoulli
relevance model. Liu et al. [6] built multiple graphical models with
various correlations between images and tags, and then performed
auto-annotation with manifold learning processes. Makadia et al.
[5] proposed a widely-used auto-annotation baseline termed JEC,
which is a straightforward greedy algorithm propagating labels
from nearest visual neighbors to a to-be-annotated image. And
Guillaumin et al. [7] proposed to adopt discriminative metric
learning methods in nearest neighbor models, putting forward a
state-of-the-art auto-annotation model termed TagProp. In [8,9],
Ma et al. further proposed effective methods to exploit the original
feature space, via sparsity-based feature selection or uncovering
shared subspace, to improve the performance of image auto-anno-
tation. Tag recommendation [2,11–15] is a trade-off between
auto-annotation and manual tagging, which is to recommend
semantically related tags to a user while he is annotating an image
online. Sigurbjörnsson and Zwol [2] proposed a generic tag recom-
mendation method exploiting the collective knowledge residing in
images. Wu et al. [12] proposed a learning-based multi-modality
recommendation algorithm by considering both tag and visual cor-
relations. And Lee et al. [13] formulated tag recommendation as a
maximum a posteriori (MAP) problem using a visual folksonomy.

When comparing tag completion and image auto-annotation,
the former can be seen as a special case of the latter. However,

Fig. 1. An exemplary image downloaded from Flickr, with its initially labeled tags
(black & red) and several missing related ones (blue). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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many existing auto-annotation methods assume that images in the
training set are completely labeled with precise tags, as also
revealed by Qi et al. [16], and they generally focus on predicting
tags for fully unlabeled images. Yet for tag completion, images in
both training and test sets can all be partially labeled, and thus
applying auto-annotation methods to tag completion may not
work well. Because their performance can be negatively affected
by the partially labeled training set, and they generally neglect to
exploit the initial tags of to-be-completed images, which actually
can provide important clues for discovering the missing related
ones. As for tag recommendation methods, they are generally
designed to work online and prefer to interacting with labellers
and incorporating feedbacks, while tag completion can be auto-
matically done offline with much looser requirements of real-time
performance.

Tag completion is also closely related to tag refinement, which
focuses on improving the quality of user-provided tags. Tag refine-
ment includes tag denoising and completion, and has recently
become an attractive subject of many ongoing researches [17–
25]. As a pioneer work, Jin et al. [17] combined multiple semantic
similarity measurements based on WordNet [26] to estimate the
correlations between tags, and then removed the weakly-related
ones. Xu et al. [19] proposed to distinguish unrelated tags with
topic model and further presented regularized Latent Dirichlet
Allocation (i.e. rLDA) for tag refinement. Lee et al. [21] utilized
neighbor voting to learn the relevance of each tag to an image,
and then differentiated noisy tags from correct ones. Liu et al.
[22] performed tag denoising based on the consistency between
‘‘visual similarity’’ and ‘‘semantic similarity’’ in images, and then
enriched the refined tags with their synonyms and hypernyms in
WordNet. Zhu et al. [23] formulated the tag refinement problem
as a decomposition of the initial tagging matrix into a low-rank
refined tagging matrix and a sparse error matrix, with an optimiza-
tion objective of low-rank, content consistency, tag correlation and
error sparsity. Liu et al. [24] proposed to treat each pair of
associated tag and image as a semantic unity, and further built a
hyper-graph model with semantic unities for tag clustering and
refinement.

By reviewing previous researches on tag refinement, we realize
that they focused more on tag denoising but less on tag comple-
tion. Although a few of them (i.e. [23–25]) were claimed to be

unified frameworks for both denoising and completion, their per-
formance still needs further improvement. Since the incomplete-
ness of tags can also result in significant performance
degradations of tag-dependent applications, as will be validated
by our experiments later, we propose that tag completion still
deserves further attention and researches, and more effective tag
completion methods are expected to be developed. Recently, Wu
et al. [27] proposed to address the tag completion problem by
searching for the optimal tagging matrix which is consistent with
both observed tags and visual similarities. Liu et al. [28] proposed
to utilize non-negative data factorization method to perform tag
completion, embedding various available contextual information
like within-image and cross-image relations, etc.

3. Proposed DLSR

An illustration of the framework of the proposed DLSR is given
in Fig. 2. It can be seen that DLSR consists of two parts, i.e. image-
view (upper dotted rectangle) and tag-view (lower dotted rectan-
gle) linear sparse reconstructions. And for each to-be-completed
image, they will be separately performed to obtain an image-view
reconstructed tagging vector and a tag-view one. Then both will be
normalized and combined for predicting the relevance of unlabeled
candidate tags. And those with higher relevance will be selected for
tag completion.

Specifically, in image-view linear sparse reconstruction, the
low-level image features and the initial tagging vector of an image
is concurrently reconstructed with those of others. And in tag-view
linear sparse reconstruction, the corresponding tagging column
vector of a tag in the initial tagging matrix is reconstructed with
those of others. Both the image-view and the tag-view reconstruc-
tions are formulated as convex optimization problems under con-
straints of sparsity. The sparsity constraints are attributed to the
observation that generally an image contains only a few objects
and a tag connotes only a few levels of meaning, and usually the
corresponding objects or levels of meaning are redundantly con-
tained or implied in the context. It should be noticed that the tag-
ging vectors utilized in the image-view and the tag-view linear
sparse reconstructions are quite different. The former are to exploit
the image-image semantic similarities while the latter are to

Fig. 2. Framework of the proposed DLSR, illustrated with toy data. Given an incomplete initial tagging matrix, DLSR separately performs tag completion via image-view
(upper dotted rectangle) and tag-view (lower dotted rectangle) linear sparse reconstructions, and combines the corresponding results for better predicting missing related
tags.
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exploit the tag-tag correlations. Therefore, the image-view linear
sparse reconstruction mainly utilizes the visual similarities and
semantic similarities between images, while the tag-view linear
sparse reconstruction exploits the correlations between tags. And
thus the proposed DLSR considers various available contextual
information for tag completion.

With the results of both image-view and tag-view linear sparse
reconstructions, the proposed DLSR further combines them for bet-
ter predicting the missing related tags. In this paper, we propose to
treat the image-view and the tag-view results as the tag retrieval
results from two distinct ‘‘search engines’’, and resort to effective
normalization and combination strategies in the field of meta-
search for better combining them and achieving further perfor-
mance improvement.

3.1. Image-view linear sparse reconstruction

Given a partially labeled dataset, image-view linear sparse
reconstruction is to exploit the image-image correlations for
obtaining an image-view reconstructed tagging vector for each
to-be-completed image. As mentioned previously, both low-level
image features and high-level initial tagging vectors are consid-
ered. Specifically, for any to-be-completed image I, its feature vec-
tor and initial tagging vector are optimally reconstructed with
those of others. Following is the framework of the corresponding
objective function.

H ¼ min
a

H1ðaÞ þ lH2ðaÞ þuðaÞ ð1Þ

where ak�1 is the required weighting vector consisting of the recon-
struction weights of other k images in the image-view linear sparse
reconstruction, H1ðaÞ and H2ðaÞ are respectively the reconstruction
residuals w.r.t the feature vector and the initial tagging vector of I;l
is a weighting parameter for balancingH1ðaÞ andH2ðaÞ, and uðaÞ is
a set of regularizers for a.

Linear sparse reconstruction w.r.t low-level image features is to
reconstruct an image with others using their corresponding feature
vectors. Assuming the feature vector of the to-be-completed image
is f l�1, where l is the dimensionality, the reconstruction residual
w.r.t low-level image features can be formulated as follows.

H1ðaÞ ¼ kf � Fak22 ð2Þ

where k � k2 denotes l2 norm, and Fl�k is a dictionary matrix consist-
ing of feature vectors of the other k images.

Similarly, the linear sparse reconstruction w.r.t initial tagging
vectors is to reconstruct an image with others using their corre-
sponding initial tagging vectors. The reconstruction residual is for-
mulated in a similar way as follows.

H2ðaÞ ¼ kW t� bTa� �
k22 ð3Þ

where tn�1 is the n-dimensional initial tagging vector of the to-be-
completed image, with n being the number of tags, and bTn�k is
the dictionary matrix consisting of tagging vectors of the other k
images. Here Wn�n is a diagonal matrix for weighting the recon-
struction residual of each entry in t, defined as Wi;i ¼ exp tið Þ. It
can be seen that W assigns higher weights to the non-zero entries
(i.e. initially labeled tags) of the initial tagging vector t, since they
are already ensured while the zero ones (i.e. unlabeled tags) are not.

Furthermore, we introduce a sparse group lasso regularizer and
a diversity regularizer to the objective function of image-view lin-
ear sparse reconstruction. The former regularizer, i.e. sparse group
lasso, is inspired by the following observations: (1) generally an
image contains only a few objects that are redundantly contained
in other images, (2) an image is usually associated with only a
few tags and images containing an identical tag probably share

more common semantic content. The first observation implies that
the reconstruction weighting vector a is expected to be sparse. And
the second suggests that the non-zero entries of a should corre-
spond to images sharing only a few common tags. Therefore, we
propose the following sparse group lasso regularizer u1ðaÞ.

u1ðaÞ ¼ kak1 þ
Xn
i¼1

kgik2 ð4Þ

Here we introduce a group structure for a as [29], and gi is the ith

group of reconstruction weights, i.e. gi ¼ aj i;1ð Þ;aj i;2ð Þ; . . . ;aj i;jgi jð Þ
� �T ,

where j i; jð Þ is the index of the jth weight of the ith group in a. Spe-
cifically, images sharing a common tag will form a group, and thus
each candidate tag corresponds to a group of reconstruction
weights, i.e. the weights of images containing the tag. Then in for-
mula (4), n is the number of candidate tags. Note that the groups
can be overlapped since images are usually labeled with several
tags. In u1ðaÞ, the group lasso part, i.e.

Pn
i¼1kgik2, separately utilizes

l2 norm for smoothing intra-group weights and l1 norm for empha-
sizing inter-group sparsity. And the lasso part, i.e. kak1, further
enforces a to be sparse. Therefore, the combined sparse group lasso
regularizer can enforce the non-zero entries of a to correspond to
only a few images and a few tags, which is expected by the former
two observations.

However, the sparse group lasso regularizer may lead the recon-
struction weights to being dominating in only a few images con-
taining an identical initial tagging vector to that of the to-be-
completed image I, since they are probably more similar to I in both
image features and initial tagging vectors. Fig. 3 gives an illustration
of the case, where the to-be-completed image I is initially labeled
with ‘‘clouds’’, and another two missing related tags, i.e. ‘‘sun’’
and ‘‘sky’’, are expected to be completed. With only the sparse
group lasso regularizer, the low-level feature vector and the initial
tagging vector of I, can be well reconstructed with only image 1 and
2, as they have the same initial tagging vectors and are quite visu-
ally similar. However, in that case, the image-view reconstruction
cannot provide any helpful information about the missing related
tags. Because the image-view reconstructed tagging vector, as will
be elaborated in formula (7), is obtained by linearly combining the
tagging vectors of images with non-zero reconstruction weights,
and thus entries corresponding to the unlabeled tags, including
themissing related ones, will be zero. Then in that case, image-view
linear sparse reconstruction will not work for tag completion. To
avoid that, we introduce a diversity regularizer u2ðaÞ as follows.

u2ðaÞ ¼ ksTak22 ð5Þ
where sk�1 is the non-negative similarities between the initial tag-
ging vector of I and those of the other k images. In our experiments,
s is calculated as the cosine similarities between initial tagging vec-
tors, with all its entries lying in 0;1½ �. Since entries of the objective
weighting vector awill mostly be non-negative, we can see that the
regularizer will help to penalize the large reconstruction weights of
images associated with the same initial tagging vectors as that of I.
And thus it can give other visually similar images containing a sim-
ilar but not identical initial tagging vector, e.g. image 3, 4 and 5 in
Fig. 3, more chances to contribute to the image-view reconstruction
with non-zero weights and then provide more information about
the missing related tags.

Therefore, for image-view linear sparse reconstruction consid-
ering both low-level image features and high-level initial tagging
vectors, we can obtain the integral objective function as follows.

H ¼ min
a

kf � Fak22 þ lkW t� bTa� �
k22 þxksTak22

þ k kak1 þ
Xn
i¼1

kgik2

 !
ð6Þ
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where k andx are weighting parameters for balancing the effects of
regularizers. The image-view objective function H can be demon-
strated to be convex, meaning that there exists a global optimal
solution. For details regarding the proof, one can refer to A.1. Then
the optimal a can be utilized for obtaining an image-view recon-
structed tagging vector t1 for the to-be-completed image I, as
shown in formula (7).

t1 ¼ bTa ð7Þ

3.2. Tag-view linear sparse reconstruction

Given a partially labeled dataset, tag-view linear sparse recon-
struction is to exploit the tag-tag correlations for obtaining a tag-
view reconstructed tagging vector for each to-be-completed image
with its initially labeled tags. Specifically, for each tag, its corre-
sponding tagging column vector rm�1 in the initial tagging matrix,
is linearly reconstructed with those of others as the following for-
mula, with m being the number of images in the given dataset.

W ¼ min
b

kW0 r� bRb� �
k22 þ nkbk1 ð8Þ

where bðn�1Þ�1 is the required weighting vector consisting of the
reconstruction weights of other tags, bRm� n�1ð Þ is the dictionary
matrix consisting of the tagging column vectors of other tags, and
n is a weighting parameter for penalizing the non-sparsity of b.
Additionally, W0

m�m is a diagonal weighting matrix for the recon-
struction residuals of all entries of r, which is defined in the same
way as W in formula (3).

The tag-view objective function W can be demonstrated to be
convex and thus there exists a global optimal solution. For details
concerning the proof, one can refer to A.2. Actually, for the hth tag
in the vocabulary, by adding a zero entry at its corresponding posi-
tion in the optimal b, we can obtain b̂n�1 ¼ ½b1; . . . ; bh�1;0;
bh; . . . ; bn�1�

T . Then all the obtained b̂ of each tag can form a
tag-tag correlation matrix Bn�n column by column. And for any
given initial tagging vector t of a to-be-completed image, B can
be utilized to obtain a tag-view reconstructed tagging vector t2
as follows.

t2 ¼ BTt ð9Þ

Note that when the to-be-completed image is fully unlabeled, i.e.
entries of t are all zeros, the tag-view reconstruction will not work,
as the obtained t2 will be a zero-entry vector. Actually in that case,

even the image-view reconstruction can only reconstruct the low-
level feature vector of the to-be-completed image with those of
others, which will probably not work well. Therefore, we suggest
that the proposed DLSR is better to be applied to performing tag
completion for partially labeled images with at least one initial
tag, rather than fully unlabeled ones.

3.3. Combination of image-view and tag-view results

For any to-be-completed image, an image-view reconstructed
tagging vector t1 and a tag-view reconstructed tagging vector t2
can be respectively obtained with the proposed image-view and
tag-view linear sparse reconstructions. Then it would be important
to combine both in an appropriate way for better predicting the
missing related tags.

In this paper, we propose to treat t1 and t2 as the results of
retrieving related tags with the given to-be-completed image and
its initially labeled tags as a query from two distinct ‘‘search
engines’’ (i.e. both views of image and tag). Then t1 and t2 can be
normalized and combined with available effective normalization
and combination strategies in the field of meta-search [30–34].
Meta-search is an extensively researched topic focusing on how
to combine the retrieval results from different search engines to
yield the optimal retrieval performance. As revealed by Vogt and
Cottrell [30], a linear combination strategy is generally more flex-
ible than most of others. And thus in our experiments, we utilize
the ZMUV (Zero-Mean, Unit-Variance) normalization method pro-
posed by Montague and Aslam [32] to separately normalize t1 and
t2, and then linearly combine both to be an integral reconstructed
tagging vector t0, as shown in the following formula.

t0 ¼ d
t1 � lt1

rt1
þ ð1� dÞ

t2 � lt2

rt2
ð10Þ

where lti
and rti are respective the mean value and the standard

deviation of ti ði ¼ 1;2Þ, and d is a weighting parameter in ð0;1Þ
for balancing the results of both views. Then based on t0, which
reflects the relevance of tags to the to-be-completed image, unla-
beled tags with higher relevance are selected and added.

3.4. Solution and implementation issues

The objective functions of the image-view and the tag-view lin-
ear sparse reconstructions, i.e. formula (6) and (8), are both uncon-
strained convex optimization problems. Hence kinds of effective

Fig. 3. An illustration on toy data of the case where the sparse group lasso regularizer leads the reconstruction weights to being dominating in only a few images (i.e. image 1
and 2) containing the same initial tagging vector as the to-be-completed image I. Here tags in black color are the initial tags with images, while the blue ones are the missing
related tags of I, and values on the arrows are the corresponding reconstruction weights of images in the image-view linear sparse reconstruction for I. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(sub-) gradient descent based methods can be utilized for
optimization.

For the objective function of image-view linear sparse recon-
struction (i.e. formula (6)), as all model parameters (i.e. l;x; k)
are non-negative, it can be rewritten as follows to be a standard
form of Least Squares Loss Problem [35] regularized by an overlap-
ping sparse group lasso.

H ¼ min
a

kX1a� y1k
2
2 þ k kak1 þ

Xn
i¼1

kgik2

 !
ð11Þ

where

X1 ¼
F

WbT ffiffiffiffilp

sT
ffiffiffiffiffi
x

p

264
375; y1 ¼

f
Wt

ffiffiffiffilp

0

264
375

Then the gradient w.r.t a can be derived as follows.

@H
@a

¼ 2X T
1X1a� 2X T

1y1 þ k I að Þ þ
Xn
i¼1

EðiÞa
kgik2

 !
ð12Þ

where I að Þ is an indicator function for all entries of a, defined as
I að Þi ¼

ai
jai j

and assigned as some particular value when j ai j¼ 0 since
kak1 is not differentiable at zero entries [36]. And E ið Þ is a diagonal
indicator matrix with EðiÞ

j;j being 1 if aj 2 gi and 0 otherwise. For
details of the derivation, one can refer to A.1. In our experiments,
we utilize the widely-used sparse learning package SLEP [35], to
optimize H and obtain the optimal a for each to-be-completed
image.

Similarly, the objective function of tag-view linear sparse recon-
struction (i.e. formula (8)) can also be rewritten as follows to be a
standard form of Least Square Loss Problem with a l1-norm
regularizer.

W ¼ min
b

kX2b� y2k
2
2 þ nkbk1 ð13Þ

where

X2 ¼ W0 bRh i
; y2 ¼ W0r

� �
Then the gradient w.r.t b can be derived as follows.

@W
@b

¼ 2X T
2X2b� 2X T

2y2 þ nI bð Þ ð14Þ

where I bð Þ is an indicator function for all entries of b, defined in the
same way as I að Þ in formula (12). For details of the derivation, one
can refer to A.2. And the SLEP package can also be utilized for opti-
mizing W and obtaining the optimal b for each tag in the
vocabulary.

In the objective functions of the image-view and the tag-view
linear sparse reconstructions, sometimes the to-be-reconstructed
vectors (i.e. f; t or r) can be high-dimensional and the dictionary
matrices (i.e. F; bT or bR) can be large. Then the computational cost
of DLSR can be high. Here we propose that dimensionality reduc-
tion methods or sampling strategies like kNN (i.e. k Nearest Neigh-
bors) can be adopted in that case for shrinking vectors or building
smaller dictionary matrices while keeping acceptable performance.

4. Experiments

4.1. Experimental settings

To evaluate the proposed DLSR, we conduct extensive experi-
ments on two widely-used benchmark datasets, i.e. Corel5k and
IAPR TC12, and two web image datasets, i.e. NUS-WIDE and a
new-built one named Flickr30Concepts. Some statistics of the four
datasets are given in Table 1. With accurate manual annotations,
the labeled tags of each image in Corel5k and IAPR TC12 are gener-

ally complete and contain few noises. Yet the vocabularies of both
datasets are relatively small. And thus we further evaluate the pro-
posed method on two much larger real-world web image datasets.
The first one is the public NUS-WIDE dataset built by Chua
et al.[37] with images randomly collected from Flickr. Following
experiments in [27], we keep the top 1000 most frequent tags as
its vocabulary for reducing random noises. Moreover, we build a
new dataset named Flickr30Concepts by collecting images in a dif-
ferent way from NUS-WIDE. Specifically, we submit 30 non-
abstract concepts1 as queries to Flickr and collect the top 1000 of
the retrieved images for each. Since the queries mostly correspond
to small categories, the retrieved images for each are generally
semantically related. We utilize WordNet for stemming and filtering
the raw tags, and finally obtain a vocabulary containing 2513 dis-
tinct tags. Without any further reduction, this vocabulary could be
more challenging than others ever used in experiments of previous
related work [23,24,27,28]. Flickr30Concepts is also publicly avail-
able for research.

To perform tag completion, we randomly delete 40% of the
labeled tags for all images in each dataset, and ensure that each
image has at least one tag deleted and finally has at least one tag
left. Therefore, we strike out images that are originally associated
with only one tag. Finally we obtain four pretreated datasets with
statistics shown in Table 1. Here all images in any dataset are par-
tially labeled, which can be seen as the most challenging case of tag
completion since no completely labeled images are provided. Then
each dataset is split into test set (around 1=10) and training set.
Note that we use the standard splits of the benchmark Corel5k
and IAPR TC12 for experiments, as [5,7]. Moreover, we take around
1=9 of each training set as a validate set for parameter tuning. Due
to the high costs of manual judgements for the tag completion
results, in our experiments we take the deleted tags of each image
as the ground-truth for measuring the performance of a tag com-
pletion method.

The experimental results of tag completion are measured with
average precision@N (AP@N), average recall@N (AR@N) and cover-
age@N (C@N). For the top N tags added to a test image,
precision@N is to measure the proportion of correct tags within
the added ones, and recall@N is to measure the proportion of the
ground-truth missing tags that are added, which are both averaged
over all test images. Coverage@N is to measure the proportion of
test images with at least one correctly added tag. All these perfor-
mance metrics are respectively defined as follows.

AP@N ¼ 1
m

Xm
i¼1

Nc ið Þ
N

ð15Þ

AR@N ¼ 1
m

Xm
i¼1

Nc ið Þ
Ng

ð16Þ

C@N ¼ 1
m

Xm
i¼1

I Nc ið Þ > 0ð Þ ð17Þ

Table 1
Statistics of the benchmark Corel5k, IAPR TC12 and the real-world NUS-WIDE,
Flickr30Concepts. Counts of tags are given in the format ‘‘mean/maximum’’.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts

Vocabulary size 260 291 1000 2513
Nr. of images 4918 19,062 237,131 27,838
Tags per image 3.4/5 5.9/23 6.5/131 8.3/70
Del. tags per image 1.4 (40%) 2.3 (40%) 2.6 (40%) 3.3 (40%)
Test set 492 1,898 23,713 2,807

1 The 30 non-abstract concepts are: aircraft, ball, beach, bike, bird, book, bridge, car,
chair, child, clock, countryside, dog, door, fire, fish, flower, house, kite, lamp,
mountain, mushroom, pen, rabbit, river, sky, sun, tower, train, tree.
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where m is the number of test images, Nc ið Þ is the number of cor-
rectly added tags to the ith image, Ng ið Þ is the number of the
ground-truth missing tags (i.e. the deleted ones) expected to be
added to the ith image, and I �ð Þ is a condition function that returns
1 when the condition is satisfied and 0 otherwise.

In our experiments, for Corel5k, IAPR TC12 and Flickr30Con-
cepts, we utilize the open-source Lire project [38] for extracting
ten kinds of low-level features2 for each image, including global
and local features, color and texture features, etc. And for NUS-WIDE,
we utilize the provided six kinds of features.3 Then for each dataset,
we utilize principal component analysis (i.e. PCA) to separately per-
form dimensionality reduction for all features of an image, which are
then concatenated to be a 400-dimensional merged feature vector.
To measure the visual distance between images, we empirically uti-
lize Euclidean distance for Edge Histogram, FCTH and Wavelet Tex-
ture, v2 distance for Color Layout and JCD, and Manhattan distance
for the remaining features. Following JEC [5], distances of all features
are normalized and combined with equal weights to be a final visual
distance.

As mentioned previously, the proposed DLSR can be used as
either an inductive method to perform tag completion for an
unseen image or a transductive one for completing an existing
dataset. For completing an unseen image, only images in the train-
ing set are utilized to build dictionary matrices. And for completing
an existing dataset, DLSR can utilize all images in both training and
test sets for linear sparse reconstructions, since all the to-be-com-
pleted images are already observed and also partially labeled,
which can probably provide extra helpful information, and in this
case we denote it as pDLSR, the transductive version of DLSR.

4.2. Tag completion results

In our experiments of tag completion, we adopt remarkable
image auto-annotation methods (i.e. JEC [5] and TagProp [7]), tag
recommendation approaches (i.e. Vote+ [2] and Folksonomy [13])
and recently proposed unified tag refinement frameworks of deno-
ising and completion (i.e. LR [23] and SUG [24]) as baselines for
making comparisons with the proposed DLSR. On each dataset,
the model parameters of these baselines are carefully tuned on
the corresponding validate set with their proposed tuning strate-
gies for achieving their optimal performance under the same
experimental settings, e.g. on Corel5k kNN = 200 for JEC and rML
of TagProp, ½m; ks; kd; kr � ¼ ½35;3;4;2� for Vote+, etc. Actually the
tuned parameter settings prove to yield much better performance
than just using the published ones. And thus fairer comparisons
can be further made with the proposed method.

For DLSR, to get more inside analyses of its reasonableness and
effectiveness, we evaluate several of its variants. DLSR-IF and
DLSR-IT are two variants that respectively perform tag completion
via image-view linear sparse reconstruction with only low-level
image features or initial tagging vectors, i.e. formula (2) and (3)
with the proposed regularizers. Moreover, DLSR-I and DLSR-T are
two variants that respectively perform tag completion via only
image-view or tag-view linear sparse reconstruction, i.e. formula
(6) and (8). Essentially DLSR-I is the combination of DLSR-IF and
DLSR-IT. And DLSR is the proposed integral tag completion method
combining both DLSR-I and DLSR-T. Meanwhile, pDLSR is the
transductive version to complete all test images together, which
utilizes images in both training and test sets to build dictionary
matrices for linear sparse reconstructions. Note that in our exper-

iments, the completion results of all methods are measured on the
same test sets. For DLSR and its variants, to reduce the computa-
tional cost of image-view linear sparse reconstruction, we adopt
a kNN strategy and take the 200 nearest visual neighbors of each
test image to build the dictionary matrices. The model parameters
of DLSR are carefully tuned on the validate set of Corel5k. Specifi-
cally, for l;x; k and n in the image-view and the tag-view linear
sparse reconstructions, i.e. formula (6) and (8), they are tuned via
grid search with the corresponding value varying in
f0;2�3;2�2; . . . ;22;23g. And for d in the combination of image-view
and tag-view reconstructed tagging vectors, i.e. formula (10), it is
also tuned via grid search in f0;0:1;0:2; . . . ;0:9;1g. According to
the tag completion performance on the validate set, the optimal
settings for l;x; k; n and d are respectively 2�2;2;1;22 and 0:5.
Then we utilize them on test sets of Corel5k, IAPR TC12 and
Flickr30Concetps in the subsequent experiments to validate the
effectiveness of DLSR, and see how well the selected parameters
on Corel5k can be generalized to the other datasets, since DLSR
has more model parameters to tune than several baselines. Note
that though we do not perform parameter tuning as other base-
lines for the proposed DLSR on the validate sets of IAPR TC12
and Flickr30Concepts, we perform parameter analyses for DLSR
on all datasets to see the effects of model parameters and the dif-
ferences between the selected parameter settings and the optimal
ones on each dataset, as will be presented in the following subsec-
tion. For NUS-WIDE, as it provides totally different image features,
we still need to perform parameter selection for DLSR on it. The
corresponding selected optimal l;x; k; n and d are respectively
2�2;2;2�2;22 and 0:3.

Table 2 presents the tag completion results of the proposed
DLSR and its variants on the benchmark Corel5k and IAPR TC12,
together with those of remarkable baselines. The experimental
results are measured with AP@N;AR@N and C@N, with N being 2
on Corel5k and 3 on IAPR TC12, since the average number of
deleted tags per image on both datasets is respectively 1.4 and
2.3, as shown in Table 1. From the experimental results we can
draw the following conclusions. (1) The proposed DLSR and its
variants generally outperform the remarkable baselines, including
image auto-annotation methods, tag recommendation approaches
and unified tag refinement frameworks, which well demonstrates
their effectiveness. (2) The variant DLSR-I outperforms both
DLSR-IF and DLSR-IT, which well validates the necessity of concur-
rently considering both low-level image features and high-level
initial tagging vectors in image-view linear sparse reconstruction.

Table 2
Tag completion results on the benchmark Corel5k and IAPR TC12, in terms of
AP@N;AR@N and C@N. Among the baselines, JEC and TagProp are image auto-
annotation methods, Vote+ and Folksonomy are tag recommendation approaches,
while LR and SUG are unified tag refinement frameworks of denoising and
completion. Others are variants of the proposed DLSR. Numbers in bold highlight
the best performance achieved by baselines or variants of the proposed DLSR.

Corel5k IAPR TC12

AP@2 AR@2 C@2 AP@3 AR@3 C@3

JEC 0.23 0.33 0.39 0.20 0.26 0.44
TagProp 0.27 0.40 0.48 0.22 0.29 0.51
Vote+ 0.25 0.37 0.45 0.20 0.26 0.48
Folksonomy 0.20 0.30 0.36 0.17 0.22 0.42
LR 0.27 0.40 0.47 0.24 0.31 0.52
SUG 0.25 0.38 0.45 0.20 0.26 0.48

DLSR-IF 0.28 0.41 0.49 0.23 0.31 0.53
DLSR-IT 0.26 0.37 0.45 0.23 0.30 0.50
DLSR-I 0.33 0.48 0.58 0.29 0.38 0.62
DLSR-T 0.28 0.41 0.49 0.22 0.30 0.53

DLSR 0.34 0.50 0.59 0.30 0.41 0.65
pDLSR 0.34 0.50 0.59 0.31 0.42 0.66

2 The ten kinds of features include: Color Correlogram, Color Layout, CEDD, Edge
Histogram, FCTH, JCD, Jpeg Coefficient Histogram, RGB Color Histogram, Scalable
Color, SURF with Bag-of-Words model.

3 The provided features include: Color Histogram, Color Correlogram, Edge
Histogram, Wavelet Texture, Color Moments and SIFT with Bag-of-Words model.
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(3) DLSR outperforms both DLSR-I and DLSR-T, providing a strong
evidence for the effectiveness and reasonableness of performing
tag completion from both views of image and tag. (4) The trans-
ductive pDLSR slightly outperforms the inductive DLSR, since the
former utilizes extra partially labeled images in the test set for
building dictionary matrices while the latter does not.

Furthermore, we conduct experiments for all methods on the
larger and more challenging real-world datasets, NUS-WIDE and
Flickr30Concepts. Table 3 presents all the experimental results, in
terms of AP@N;AR@N and C@N, with N being 3 on NUS-WIDE
and 4 on Flickr30Concepts, as the average number of deleted tags
per image on both datasets is respectively 2.6 and 3.3. Note that
here we cannot obtain the tag completion results of SUG on both
datasets due to its high computational cost to calculate the eigen-
values of the normalized Laplacian matrix of a large hyper-graph.
We also cannot obtain the results of LR on NUS-WIDE due to its
costly singular value decomposition for a large intermediate
matrix with the same size as the initial tagging matrix. From
Table 3 we can draw nearly the same conclusions as those on the
benchmark Corel5k and IAPR TC12, which further demonstrate
the effectiveness of the proposed DLSR. Moreover, since experi-
ments of DLSR on both IAPR TC12 and Flickr30Concepts utilize
the same parameter settings as those on Corel5k, the superior
experimental results on both datasets in some sense demonstrate
its robustness.

To compare with the most recently published tag completion
methods, i.e. TMC [27] and DLC [28], we further conduct
experiments on all datasets with new image features, because
DLC requires the feature vector of each image to be non-negative
and TMC prefers the dot product of feature vectors to being
non-negative. Therefore, we utilize the SIFT feature with Bag-of-
Words (BoW) model to represent each image, which is natively

non-negative while many others are not. Moreover, SIFT is the only
common feature used in the experiments of both methods and also
the main feature utilized by TMC. Table 4 presents the experimen-
tal results of TMC, DLC and variants of DLSR on all datasets, which
further demonstrate the effectiveness and reasonableness of the
proposed method. Note that we cannot obtain the results of DLC
on NUS-WIDE since the needed image-image correlation matrix
is too large. It can be seen that both baselines yield inferior perfor-
mance here, especially DLC. We attribute that to the following rea-
sons: (1) both TMC and DLC are non-convex and may converge to a
local optimum, (2) DLC depends heavily on image features for
matrix factorization and calculating image similarities. For the
proposed DLSR, with only SIFT feature, many retrieved visual
neighbors of test images for building dictionary matrices are
semantically unrelated, leading to a substantial performance
degradation of the image-view linear sparse reconstruction. Yet
boosted by the tag-view linear sparse reconstruction, the
combined tag completion results (i.e. DLSR and pDLSR) are still
acceptable and superior to those of the baselines, which well dem-
onstrates the robustness of DLSR and the necessity of performing
tag completion from both views of image and tag.

Moreover, to evaluate the model enhancements introduced in
this paper, i.e. the diversity regularizer (formula (5)) and the
ZMUV normalization method for combining image-view and
tag-view results (formula (10)), we further compare the experi-
mental results of DLSR with those of its previous version pre-
sented in [3]. Following [3], here the previous version is
denoted as LSR and its transductive variant as pLSR. Table 5 pre-
sents the comparisons between the experimental results of DLSR
and LSR, with those between pDLSR and pLSR, on all datasets
with the various kinds of low-level image features. From the com-
parisons, we can observe that the introduced model enhance-
ments in this paper can indeed help to gain performance
improvement on most datasets, which demonstrates their effec-
tiveness. For getting more inside details, we compare DLSR-I
and its counterpart in [3], denoted as LSR-I, to validate the effec-
tiveness of the introduced diversity regularizer in the image-view
linear sparse reconstruction, as shown in Table 6. It can be seen
that on all datasets, the introduced diversity regularizer can help
to improve the performance of image-view reconstruction, which
demonstrates the reasonableness of considering diverse tag infor-
mation for tag completion. Moreover, we compare the combina-
tion method in this paper and that used in [3] to validate the
effectiveness of the former, with the latter denoted as DLSR*, as
shown in Table 7. From the comparisons, we can observe that
the new combination method with ZMUV normalization in this
paper generally yields slightly better performance on most data-
sets. To conclude, experimental results show that the model
enhancements introduced in this paper are reasonable and gener-
ally can help to gain performance improvement over the previous
version presented in [3].

Table 3
Tag completion results on the real-world NUS-WIDE and Flickr30Concepts, in terms
of AP@N;AR@N and C@N. Numbers in bold highlight the best performance achieved
by baselines or variants of the proposed DLSR.

NUS-WIDE Flickr30Concepts

AP@3 AR@3 C@3 AP@4 AR@4 C@4

JEC 0.06 0.07 0.14 0.25 0.30 0.49
TagProp 0.08 0.10 0.21 0.23 0.29 0.50
Vote+ 0.12 0.14 0.31 0.23 0.27 0.48
Folksonomy 0.07 0.08 0.19 0.21 0.26 0.47
LR – – – 0.27 0.34 0.51
SUG – – – – – –

DLSR-IF 0.07 0.08 0.18 0.21 0.30 0.48
DLSR-IT 0.09 0.10 0.20 0.26 0.28 0.42
DLSR-I 0.11 0.12 0.24 0.35 0.44 0.64
DLSR-T 0.16 0.20 0.39 0.30 0.36 0.60

DLSR 0.18 0.22 0.42 0.38 0.48 0.71
pDLSR 0.18 0.22 0.42 0.39 0.48 0.72

Table 4
Tag completion results of TMC, DLC and variants of the proposed DLSR on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with only SIFT BoW feature, in terms of
AP@N;AR@N and C@N. Numbers in bold highlight the best performance achieved by baselines or variants of the proposed DLSR.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts
ðN ¼ 2Þ ðN ¼ 3Þ ðN ¼ 3Þ ðN ¼ 4Þ

AP AR C AP AR C AP AR C AP AR C

TMC 0.23 0.33 0.40 0.14 0.20 0.37 0.13 0.15 0.32 0.19 0.21 0.37
DLC 0.09 0.13 0.18 0.10 0.12 0.27 – – – 0.07 0.09 0.23

DLSR-IF 0.13 0.18 0.24 0.08 0.10 0.20 0.03 0.03 0.07 0.06 0.08 0.16
DLSR-IT 0.15 0.23 0.27 0.10 0.13 0.24 0.05 0.05 0.12 0.09 0.09 0.17
DLSR-I 0.19 0.28 0.34 0.13 0.17 0.31 0.05 0.06 0.13 0.12 0.14 0.25
DLSR-T 0.28 0.41 0.49 0.22 0.30 0.53 0.16 0.20 0.39 0.30 0.36 0.60

DLSR 0.28 0.42 0.50 0.23 0.31 0.55 0.17 0.20 0.40 0.31 0.37 0.61
pDLSR 0.29 0.43 0.51 0.23 0.31 0.55 0.17 0.20 0.40 0.32 0.38 0.62
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4.3. Parameter analyses

To evaluate the effects of model parameters in the proposed
DLSR, i.e. l; k;x in the image-view linear sparse reconstruction
(i.e. formula (6)) and n in the tag-view linear sparse reconstruction
(i.e. formula (8)), we use the control variable method to perform
parameter analyses on the test sets of all datasets. Specifically,
we use the same parameter settings as former experiments of
tag completion, and then vary the value of a parameter in
f0;2�3;2�2; . . . ;22;23g with others fixed to see the performance
variations.

Fig. 4 presents the experimental results of parameter analyses
on the benchmark Corel5k, in terms of AP@2;AR@2 and C@2. It
can be seen that the optimal parameter settings for l; k;x and n
(sub-Fig. 4(a)–(d)) are respectively close to the ones that we select
on the validate set of Corel5k for the former experiments of tag
completion. And we can also see that for each parameter, all the
performance curves w.r.t precision, recall and coverage are convex
on the whole, which reflects the significance of the corresponding
part included in the objective functions. Particularly, we find that
the effects of x and n are much less significant than those of l
and k. We attribute it to the following reasons: (1) for x, it is
expected to work when the reconstruction weights are dominating
in only images containing the same initial tagging vector as the to-
be-completed image, which in fact happens occasionally, (2) for n,
as a tag generally co-occurs with only a few semantically related
ones, the obtained reconstruction weights are in some way natu-
rally sparse, and thus n is expected to work for tags that co-occur
with many others.

We further investigate the effects of the weighting parameter d
for the combination of image-view and tag-view reconstructed
tagging vectors (i.e. formula (10)), by varying d from 0 to 1 with
a step of 0.1. As shown in Fig. 4(e), the optimal setting for d is

around 0.6, which is close to the one selected for former experi-
ments of tag completion (i.e. 0.5). Moreover, it can be observed that
the optimal combined tag completion result outperforms that of
single image-view (i.e. d ¼ 1) or single tag-view (i.e. d ¼ 0) linear
sparse reconstruction, which well demonstrates the effectiveness
and reasonableness of combining both the image-view and the
tag-view results.

Furthermore, to provide inside details of the optimization for
both the image-view and the tag-view objective functions, here
we give a sample of optimized a and b, as shown in Fig. 4(f). It is
obvious that the optimized a and b are both sparse, as is expected
by the corresponding introduced constraints of sparsity.

Similar experimental results and conclusions can also be
observed on IAPR TC12, NUS-WIDE and Flickr30Concepts. Specifi-
cally, we find that the optimal parameter settings on IAPR TC12
and Flickr30Concepts are also close to the ones selected on the
validate set of Corel5k, meaning that the selected parameters on
Corel5k can be well generalized to these two datasets with the
same kinds of image features. And thus parameter settings of the
proposed DLSR seem to be less dependent on datasets. Moreover,
the optimal parameter settings on NUS-WIDE, which provides dif-
ferent image features, are also mostly close to the ones that we
select on the corresponding validate set. For more details, one
can refer to Appendix B.

4.4. Tag completion with noisy initial tags

As elaborated previously, for exploiting image-image similari-
ties, the proposed DLSR reconstructs the initial tagging vector of
any to-be-completed image with those of others in the image-view
linear sparse reconstruction, and for discovering tag-tag
correlations, DLSR reconstructs the initial tagging column vector
of each tag with those of others in the tag-view linear sparse

Table 5
Comparisons between the experimental results of DLSR and its previous version LSR presented in [3] on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with the various
kinds of low-level image features, in terms of AP@N;AR@N and C@N. Comparisons between their corresponding transductive variants, i.e. pDLSR and pLSR, are also presented.
Numbers in bold highlight the best performance achieved by baselines or variants of the proposed DLSR.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts
ðN ¼ 2Þ ðN ¼ 3Þ ðN ¼ 3Þ ðN ¼ 4Þ

AP AR C AP AR C AP AR C AP AR C

LSR 0.33 0.48 0.58 0.30 0.41 0.64 0.18 0.22 0.42 0.37 0.45 0.67
DLSR 0.34 0.50 0.59 0.30 0.41 0.65 0.18 0.22 0.42 0.38 0.48 0.71

pLSR 0.33 0.49 0.58 0.31 0.41 0.65 0.18 0.22 0.42 0.38 0.46 0.69
pDLSR 0.34 0.50 0.59 0.31 0.42 0.66 0.18 0.22 0.42 0.39 0.48 0.72

Table 6
Comparisons between DLSR-I and its counterpart in [3], denoted as LSR-I, on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with the various kinds of low-level image
features, in terms of AP@N;AR@N and C@N. Numbers in bold highlight the best performance achieved by baselines or variants of the proposed DLSR.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts
ðN ¼ 2Þ ðN ¼ 3Þ ðN ¼ 3Þ ðN ¼ 4Þ

AP AR C AP AR C AP AR C AP AR C

LSR-I 0.30 0.45 0.54 0.28 0.38 0.60 0.10 0.11 0.23 0.33 0.40 0.60
DLSR-I 0.33 0.48 0.58 0.29 0.38 0.62 0.11 0.12 0.24 0.35 0.44 0.64

Table 7
Comparisons between the combination method in this paper (i.e. DLSR) and that used in [3] (i.e. DLSR*), on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with the various
kinds of low-level image features, in terms of AP@N;AR@N and C@N. Numbers in bold highlight the best performance achieved by baselines or variants of the proposed DLSR.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts
ðN ¼ 2Þ ðN ¼ 3Þ ðN ¼ 3Þ ðN ¼ 4Þ

AP AR C AP AR C AP AR C AP AR C

DLSR* 0.35 0.51 0.60 0.30 0.40 0.65 0.18 0.21 0.42 0.37 0.47 0.70
DLSR 0.34 0.50 0.59 0.30 0.41 0.65 0.18 0.22 0.42 0.38 0.48 0.71
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reconstruction. Then it would be interesting to investigate how
DLSR can tolerate with noisy initial tags.

Specifically, in our experiments, we randomly delete different
percentages (i.e. ½0%;5%;10%; . . . ;30%�) of the given initial tags
in both training set and test set, and replace them with noisy ones,
i.e. semantically unrelated tags. Then we evaluate the proposed
DLSR in those cases with different percentages of noisy initial tags,
as illustrated in Fig. 5. From the experimental results, we can
observe that as the percentage of noisy initial tags increases from
0% to 30%, the performance of DLSR tends to decrease on the

whole, with the recall decreasing significantly while the precision
and coverage varying a little. The significant decrease of recall is
due to that a higher percentage of noisy tags corresponds to more
ground-truth missing tags and thus larger denominators in
formula (16), resulting in a substantially lower recall. Another
interesting observation is that with noisy initial tags, DLSR can
sometimes achieve slightly better precision and coverage. It is
because that more missing tags offer DLSR more chances to get
related tags from the unlabeled candidates. To conclude, in terms
of precision and coverage, the proposed DLSR has certain tolerance
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for noisy initial tags, which can be attributed to the sparsity regu-
larizers introduced in the dual-view reconstructions.

4.5. Tag completion with repeated DLSR

Different from previous related work on tag completion [27,28]
that performs global refinement for the initial tagging matrix, the
proposed DLSR performs tag completion via linearly reconstructing
each image and each tag separately. As DLSR is not a global refine-
ment approach, when it is used to perform tag completion for an
existing dataset, one may want to see whether running DLSR over
and over can help to obtain better tag completion results. That is,
after performing tag completion for all images in the dataset with
DLSR, the completed tagging matrix can be further used to run
DLSR again for all images to get a new completed tagging matrix.
In a similar fashion, we can perform DLSR repeatedly for the to-
be-completed dataset, and see whether it can finally yield better
tag completion results than performing DLSR only once.

Specifically, when performing DLSR repeatedly, the initial tag-
ging matrix will be the input of the 1st run of DLSR. And then for
each run, its output, i.e. the completed tagging matrix, will be used
as the input of the next run. In our experiments, to keep as much
information as possible, we use the real-valued tag completion
result of a run of DLSR as the input of the next one. Moreover,
we linearly normalize the tagging vector of each image into 0;1½ �

to prevent numerical divergence, and recover the corresponding
values of initially labeled tags as 1. For each run, we measure its
tag completion result with AP@N;AR@N and C@N on the same test
sets as previous experiments, in order to get more inside details.
Fig. 6 presents the performance variations of performing DLSR
repeatedly in 10 runs on Corel5k (N ¼ 2), IAPR TC12 (N ¼ 3),
NUS-WIDE (N ¼ 3) and Flickr30Concepts (N ¼ 4). Note that for
the 1st run on each dataset, the presented performance corre-
sponds to the tag completion result of DLSR, not the quality of
the initial tagging matrix. It is evident that on all datasets, the
tag completion performance generally varies little with runs of
DLSR. Though on some datasets like IAPR TC12, a few more runs
may gain slight performance improvement, too many runs can still
result in performance degradations due to the accumulative noises
of previous ones. Therefore, it can be concluded that performing
DLSR once can generally be effective enough for tag completion,
and there is no need to perform it repeatedly, since more runs gen-
erally cannot gain substantial performance improvement and can
even lead to performance degradations.

4.6. Further evaluation with a completely labeled training set

To further evaluate the proposed DLSR, we conduct experi-
ments on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts
with the corresponding training set completely labeled, in order
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Fig. 5. Performance variations of the proposed DLSR with different percentages of noisy initial tags on Corel5k (sub-Fig. 5(a)), IAPR TC12 (sub-Fig. 5(b)), NUS-WIDE (sub-
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Table 8
Experimental results of tag completion on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with the various kinds of low-level image features and completely labeled
training sets, in terms of AP@N;AR@N and C@N. Numbers in bold highlight the best performance achieved by baselines or variants of the proposed DLSR.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts
ðN ¼ 2Þ ðN ¼ 3Þ ðN ¼ 3Þ ðN ¼ 4Þ

AP AR C AP AR C AP AR C AP AR C

JEC 0.28 0.41 0.47 0.25 0.33 0.50 0.07 0.08 0.15 0.35 0.44 0.54
TagProp 0.32 0.47 0.54 0.29 0.38 0.60 0.10 0.11 0.23 0.36 0.46 0.61
Vote+ 0.27 0.40 0.49 0.21 0.27 0.50 0.13 0.16 0.34 0.31 0.39 0.62
Folksonomy 0.23 0.34 0.40 0.20 0.27 0.44 0.08 0.10 0.21 0.27 0.35 0.50
LR 0.30 0.44 0.51 0.27 0.35 0.57 – – – 0.31 0.40 0.55
SUG 0.27 0.40 0.48 0.23 0.31 0.53 – – – – – –

DLSR 0.36 0.53 0.62 0.34 0.47 0.71 0.20 0.25 0.46 0.44 0.57 0.76
pDLSR 0.37 0.55 0.65 0.35 0.48 0.72 0.20 0.25 0.46 0.47 0.61 0.80

Table 9
Experimental results of tag completion on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with SIFT BoW feature and completely labeled training sets, in terms of
AP@N;AR@N and C@N. Numbers in bold highlight the best performance achieved by baselines or variants of the proposed DLSR.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts
ðN ¼ 2Þ ðN ¼ 3Þ ðN ¼ 3Þ ðN ¼ 4Þ

AP AR C AP AR C AP AR C AP AR C

TMC 0.24 0.36 0.43 0.17 0.23 0.43 0.14 0.17 0.34 0.18 0.21 0.36
DLC 0.10 0.14 0.20 0.10 0.13 0.28 – – – 0.06 0.10 0.23

DLSR 0.28 0.43 0.52 0.24 0.33 0.56 0.17 0.21 0.42 0.34 0.45 0.70
pDLSR 0.29 0.45 0.54 0.24 0.33 0.56 0.17 0.21 0.42 0.34 0.45 0.70
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to see whether it can still yield superior performance in better
cases of tag completion. Specifically, we recover all the deleted tags
in the training sets of all datasets. Then DLSR and other baselines
are applied to the same partially labeled test sets as former
experiments.

Table 8 presents the experimental results of JEC [5], TagProp [7],
Vote+ [2], Folksonomy [13], LR [23], SUG [24], DLSR and its trans-
ductive version pDLSR for tag completion on all datasets with the
various kinds of low-level image features, in terms of AP@N;AR@N
and C@N. Moreover, Table 9 reports the experimental results of
TMC [27], DLC [28], DLSR and pDLSR on all datasets with only SIFT
BoW feature. Then we can draw the following conclusions. (1) The
proposed DLSR and pDLSR still outperform other baselines on all
datasets with completely labeled training sets, which further dem-
onstrates their effectiveness. (2) All methods generally achieve
performance improvement with a completely labeled training
set, as can be seen by comparing with the experimental results
in Table 2–4.

5. Applications

5.1. Tag recommendation

As demonstrated by the former experiments, the proposed DLSR
achieves encouraging tag completion performance. Then if the
time cost of DLSR is acceptable, it would be feasible to be used
for online tag recommendation to help users to label their pictures
with less efforts, as Vote+ [2] and Folksonomy [13] do. Actually, in
the proposed DLSR, since the tag-view linear sparse reconstruction
is to learn a tag-tag correlation matrix B that is shared by all
unseen to-be-completed images, it can be performed and updated
offline, and then used for obtaining tag-view reconstructed tagging
vectors for to-be-completed images with formula (9). As for the
image-view linear sparse reconstruction, to facilitate the optimiza-
tion process, it would be preferable to firstly retrieve the kNN of a

to-be-completed image and then utilize their corresponding image
features and initial tagging vectors to build smaller dictionary
matrices, as our former experiments do. Recently with the devel-
opment of approximate kNN retrieval methods like locality sensi-
tive hash [39–42], the time cost to retrieve kNN from millions of
images could be only a few milliseconds, benefiting from the fast
bit operations for calculating hamming-based visual distances
between images. Moreover, with a kNN sampling strategy, the
numbers of images and candidate tags in the kNN set are generally
much smaller than the scale of the dataset, thus lowering the com-
putational cost of the image-view reconstruction and making it
less dependent on the scale of the dataset. Therefore, with the opti-
mization strategies proposed above, the tag completion process of
DLSR can be substantially accelerated.

To evaluate the proposed DLSR for tag recommendation, we fur-
ther conduct experiments on all datasets. Note that we use the
same test sets as former experiments of tag completion. And for
better simulating the real-world labeling process, we randomly
keep only one initial tag for each test image. That is, we evaluate
the performance of DLSR and the baselines (i.e. Vote+ [2] and Folks-
onomy [13]) to recommend tags for a user after he has labeled one
tag for a test image. Experimental results are measured with the
widely-used performance metrics in the field of tag recommenda-
tion [2,43], i.e. Precision at rank k (P@k) and Success at rank k (S@k).
Specifically, Precision at rank k is the average proportion of correct
tags among the top k recommended ones, and Success at rank k is
defined as the probability of finding a correct tag in the top k rec-
ommended ones. Table 10 presents the experimental results of tag
recommendation by Vote+, Folksonomy and the proposed DLSR, in
terms of P@1, P@5 and S@5. Note that S@1 is equal to P@1, and
here it is left out for clarity. It can be concluded that the proposed
DLSR significantly outperforms Vote+ and Folksonomy on all data-
sets. And thus it is effective for tag recommendation.

Here all experiments of tag recommendation are performed
with Matlab 8.1 on a PC with an Intel Core i5-2400 CPU and 4G
RAM. For the proposed DLSR, as shown in Table 11, with the
tag-tag correlation matrix B in the tag-view linear sparse recon-
structions calculated offline, the average time costs to recommend
tags for a test image in Corel5k, IAPR TC12, NUS-WIDE and
Flickr30Concept are respectively 0.03 s, 0.04 s, 0.05 s and 0.05 s.
The differences between time costs on different datasets can be
attributed to both the different vocabulary sizes and the different
average numbers of candidate tags appearing in the kNN set of a
to-be-completed image. Particularly, for the large NUS-WIDE and
Flickr30Concepts, by retrieving the kNN of a to-be-completed

Table 10
Experimental results of tag recommendation by Vote+, Folksonomy and the proposed
DLSR on Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with each test image
initially labeled with only one tag, in terms of P@1, P@5 and S@5. Numbers in bold
highlight the best performance achieved by baselines or variants of the proposed
DLSR.

P@1 P@5 S@5

Corel5k Vote+ 0.41 0.23 0.68
Folksonomy 0.40 0.21 0.68
DLSR 0.56 0.29 0.84

IAPR TC12 Vote+ 0.40 0.24 0.71
Folksonomy 0.38 0.26 0.69
DLSR 0.53 0.34 0.84

NUS-WIDE Vote+ 0.24 0.14 0.46
Folksonomy 0.19 0.12 0.38
DLSR 0.27 0.17 0.51

Flickr30Concepts Vote+ 0.33 0.22 0.49
Folksonomy 0.40 0.26 0.56
DLSR 0.47 0.30 0.71

Table 11
Average time costs (in seconds) for Vote+, Folksonomy and the proposed DLSR to
perform tag recommendation for an image in Corel5k, IAPR TC12, NUS-WIDE and
Flickr30Concepts. Numbers in bold highlight the best performance achieved by
baselines or variants of the proposed DLSR.

Corel5k IAPR TC12 NUS-WIDE Flickr30Concepts

Vote+ 0.0006 0.0001 0.0004 0.0004
Folksonomy 0.0031 0.0085 0.0619 0.0203
DLSR 0.0334 0.0364 0.0490 0.0495

Table 12
Experimental results of image auto-annotation by the state-of-the-art TagProp on
Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concepts with the training sets differ-
ently labeled, in terms of average tag-based precision (p) and average tag-based recall
(r). Numbers in bold highlight the best performance achieved by baselines or variants
of the proposed DLSR.

Training set p r

Corel5k Incompletely labeled 0.28 0.28
Completed by DLSR 0.30 0.29
Perfectly labeled 0.30 0.33

IAPR TC12 Incompletely labeled 0.41 0.17
Completed by DLSR 0.46 0.17
Perfectly labeled 0.51 0.24

NUS-WIDE Incompletely labeled 0.23 0.04
Completed by DLSR 0.26 0.04
Perfectly labeled 0.27 0.06

Flickr30Concepts Incompletely labeled 0.26 0.14
Completed by DLSR 0.30 0.17
Perfectly labeled 0.39 0.24
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image, the size of the image-view optimization problem is
significantly reduced, as the size of a kNN set is much smaller than
the total image number and the number of candidate tags appear-
ing in it is also much smaller than the vocabulary size. From the
experimental results on all datasets, it can be observed that though
the time costs of DLSR are generally higher than the previous
methods, they are still acceptable for online tag recommendation
and DLSR can also yield superior performance.

Fig. 7 gives samples of tag recommendation results by the pro-
posed DLSR on all datasets, with the red tag being the only one
user-provided tag and others being the recommended ones. For
Corel5k (i.e. sample (a)–(b)), as the mean number of tags per image
is 3.4, we only recommend the top 3 tags. And for IAPR TC12 (i.e.
sample (c)–(d)), NUS-WIDE (i.e. sample (e)–(f)) and Flickr30Con-
cepts (i.e. sample (g)–(h)), we recommend the top 5 tags. From
the samples, we can find that DLSR can well recommend semanti-
cally related tags for a given image, even with only one initially
labeled tag.

5.2. Data pretreatment for image auto-annotation

As mentioned previously, incompleteness of user-provided tags
in images can lead to performance degradations for various tag-
dependent applications, e.g. image auto-annotation. Therefore,
the proposed DLSR can be utilized as a data pretreatment method
to perform tag completion for any incompletely labeled dataset.

Here we conduct experiments of image auto-annotation on all
datasets to see whether the pretreatment by DLSR can help to
achieve performance enhancements. We utilize the state-of-the-
art image auto-annotation method, TagProp [7], for experiments,
and use the standard dataset splits of the benchmark Corel5k and
IAPR TC12 as previous work [5,7]. Here the training sets are the
same as former experiments and thus incompletely labeled, with
40% of the labeled tags deleted. And all images in the test sets are
totally unlabeled. Then for each dataset, we perform TagProp on
the same test set with the training set differently labeled. That
is, the training set can be the incompletely labeled one with
40% of the tags deleted, or the one completed by the proposed
DLSR, or the perfectly labeled one which recovers all the deleted
tags. Since the average number of deleted tags per training image
in Corel5k, IAPR TC12, NUS-WIDE and Flickr30Concpets is respec-
tively 1.4, 2.3, 2.6 and 3.3, as shown in Table 1, here we utilize

DLSR to conservatively add another 1 tag for each training image
in Corel5k, 2 tags for IAPR TC12 and NUS-WIDE, and 3 tags for
Flickr30Concepts. Following previous work of image auto-annota-
tion [4–7], each test image is annotated with the top 5 tags by
TagProp. And experimental results are measured with widely-
used performance metrics for image auto-annotation, i.e. average
tag-based precision(p) and average tag-based recall (r). With the
annotations predicted by TagProp, for each tag, the tag-based pre-
cision measures the proportion of retrieved images that are
ground-truth related ones, and the tag-based recall is defined as
the proportion of ground-truth related images that are retrieved.
Both are averaged over all tags to be the average tag-based preci-
sion and average tag-based recall.

Table 12 presents the experimental results of TagProp on all
datasets, with the corresponding training set differently labeled.
Then we can draw the following conclusions. (1) With the pro-
posed DLSR as a data pretreatment method to complete the incom-
pletely labeled training set, TagProp can generally achieve
performance enhancements on all datasets, well demonstrating
the effectiveness of DLSR. (2) By comparing the experimental
results of TagProp using the incompletely labeled training set with
those using the perfectly labeled one, we can observe that incom-
pleteness of tags in images can lead to significant performance
degradations for image auto-annotation, which further validates
the necessity of performing tag completion for incompletely
labeled images. (3) Compared with the perfectly labeled training
set, the one completed by the proposed DLSR is still inferior in pro-
moting TagProp, meaning that the field of tag completion deserves
more further researches.

6. Conclusions

In this paper we propose an effective method denoted as DLSR
for automatic image tag completion via dual-view linear sparse
reconstructions. Specifically, for any to-be-completed image, the
image-view linear sparse reconstruction exploits the image-image
correlations to obtain an image-view reconstructed tagging vector
with those of others. And the tag-view linear sparse reconstruction
exploits the tag-tag correlations to obtain a tag-view reconstructed
tagging vector with the initially labeled tags. Then both are
combined with effective normalization and combination strategies
in the field of meta-search for better predicting missing related

Fig. 7. Samples of tag recommendation results by DLSR on Corel5k (i.e. sample (a)–(b)), IAPR TC12 (i.e. sample (c)–(d)), NUS-WIDE (i.e. sample (e)–(f)) and Flickr30Concepts
(i.e. sample (g)–(h)), with the red tag being the only one user-provided tag and others being the recommended ones. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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tags. In the proposed DLSR, both the image-view and the tag-view
linear sparse reconstructions are respectively fit into convex opti-
mization frameworks, considering various available contextual
information. DLSR is evaluated with extensive experiments con-
ducted on benchmark datasets and real-world web images. And
experimental results well demonstrate that it is effective and rea-
sonable. DLSR can also help to enhance a variety of tag-dependent
applications.
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Appendix A. Proofs for convexity of the image-view and the tag-
view objective functions

A.1. Convexity of the image-view objective function

As pointed out in this paper, the objective function of the
image-view linear sparse reconstruction, i.e. the following formula,
can be demonstrated to be convex and thus there exists a global
optimal solution.

H ¼ min
a

kf � Fak22 þ lkW t� bTa� �
k22 þxksTak22

þ k kak1 þ
Xn
i¼1

kgik2

 !
As the weighting parameters (i.e. l;x; k) are non-negative,H can be
further rewritten as follows to be a standard form of Least Squares
Loss Problem [35] regularized by an overlapping sparse group lasso.

H ¼ min
a

kX 1a� y1k
2
2 þ k kak1 þ

Xn
i¼1

kgik2

 !
where

X1 ¼
F

WbT ffiffiffiffilp

sT
ffiffiffiffiffi
x

p

264
375; y1 ¼

f
Wt

ffiffiffiffilp

0

264
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Then we can derive the following formula.

H ¼ min
a

kX1a� y1k
2
2 þ k kak1 þ

Xn
i¼1

kgik2

 !

¼ min
a

X 1a� y1ð ÞT X1a� y1ð Þ þ k kak1 þ
Xn
i¼1

kgik2

 !

¼ min
a

aTX T
1X1a� 2yT

1X 1aþ k kak1 þ
Xn
i¼1

kgik2

 !
þ C1

where C1 is a constant independent of a. As kgik2 is the l2 norm of

the ith group, it can be further rewritten as kgik2 ¼ aTEðiÞa
� �1

2
, where

EðiÞ is a diagonal indicator matrix with EðiÞ
j;j being 1 if aj 2 gi and 0

otherwise. Hence H can be further rewritten as follows.

H ¼ min
a

aTX T
1X1a� 2yT

1X1aþ k kak1 þ
Xn
i¼1

aTEðiÞa
� �1

2

 !
þ C1

Then the gradient w.r.t a can be derived as the following
formula.

@H
@a

¼ 2X T
1X1a� 2X T

1y1 þ k I að Þ þ
Xn
i¼1

EðiÞa

aTEðiÞa
� �1

2

0BB@
1CCA

where I að Þ is an indicator function for all entries of a, defined as
I að Þi ¼

ai
jai j

and assigned as some particular value when j ai j¼ 0 since
kak1 is not differentiable at zero entries [36].

Then the second derivativew.r.t a (i.e. the Hessian matrix Ha) can
be further derived as follows.

Ha ¼ @2H
@a2 ¼ 2X T

1X1 þ kK

where K is the second derivative w.r.t the group lasso in the objec-

tive function H, i.e.
Pn

i¼1 aTEðiÞa
� �1

2
. As EðiÞ ¼ EðiÞT , it can be derived

that

K ¼
Xn
i¼1
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3
2
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Xn
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EðiÞ aT EðiÞað Þ� EðiÞað Þ EðiÞað ÞT
kgik2ð Þ3

Therefore, given any x 2 Rd with d being the dimensionality of a,
it can be derived that

xTHax ¼ 2xTX T
1X1xþ kxTKx

¼ 2 X1xð ÞT X1xð Þ þ k
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Since X 1x is a column vector, it is evident that

X 1xð ÞT X 1xð Þ ¼ kX 1xk22 P 0. Additionally, as EðiÞ is a diagonal matrix

with entries in f0;1g and EðiÞ ¼ EðiÞEðiÞ ¼ EðiÞT EðiÞ; aTEðiÞa
� �

xTEðiÞx
� �

� aTEðiÞx
� �T

aTEðiÞx
� �

can be rewritten as EðiÞa
� �T

EðiÞa
� �� �

EðiÞx
� �T

EðiÞx
� �� �

� EðiÞa
� �T

EðiÞx
� �� �2

, with EðiÞa; EðiÞx both being

column vectors. Then according to the Cauchy–Schwarz inequality,

aTEðiÞa
� �

xTEðiÞx
� �

� aTEðiÞx
� �T

aTEðiÞx
� �

will keep non-negative

and thus k
Pn

i¼1
aT EðiÞað Þ xTEðiÞxð Þ� aT EðiÞxð ÞT aT EðiÞxð Þ

kgik2ð Þ3
P 0, since kgik2 and k

are always non-negative. And thus xTHax will keep non-negative

for any x 2 Rd, meaning that Ha is a positive semi-definite Hessian
matrix. Therefore, the image-view objective function H is convex,
with its second-order necessary and sufficient conditions for con-
vexity being guaranteed.

A.2. Convexity of the tag-view objective function

As mentioned previously in this paper, the following objective
function of the tag-view linear sparse reconstruction is convex,
meaning that there exists a global optimal b.

W ¼ min
b

kW0 r� bRb� �
k22 þ nkbk1

Similar to the former proof w.r.t the image-view objective func-
tion, we rewrite W as follows to be a standard form of Least Square
Loss Problem with a l1-norm regularizer.

W ¼ min
b

kX2b� y2k
2
2 þ nkbk1

where

X2 ¼ W0 bRh i
; y2 ¼ W0r

� �
and then we can derive that

W ¼ X2b� y2ð ÞT X 2b� y2ð Þ þ nkbk1
¼ bTX T

2X2b� 2yT
2X2bþ nkbk1 þ C2

where C2 is a constant independent of b. And the gradient w.r.t b
can be derived as follows.

@W
@b

¼ 2X T
2X 2b� 2X T

2y2 þ nI bð Þ

where I bð Þ is an indicator function for all entries of b. Then the sec-
ond derivative of b (i.e. the Hessian matrix Hb) can be further derived
as follows.

Hb ¼
@2W

@b2 ¼ 2X T
2X2

For any x 2 Rd1 with d1 being the dimensionality of
b; xTHbx ¼ 2 X2xð ÞT X 2xð Þ ¼ 2kX2xk22 P 0, meaning that Hb is a
positive semi-definite Hessian matrix. Therefore, the tag-view
objective function W is convex, with its second-order necessary
and sufficient conditions for convexity being guaranteed.
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Appendix B. Parameter analyses for IAPR TC12, NUS-WIDE and
Flickr30Concepts

The experimental results of parameter analyses for IAPR
TC12, NUS-WIDE and Flickr30Concepts are respectively pre-
sented in Fig. B.8, B.9 and B.10. From the experimental results
we can draw nearly the same conclusions as those on the
benchmark Corel5k. Moreover, we find that the optimal
parameter settings for l; k;x; n and d on IAPR TC12 and

Flickr30Concepts are respectively close to the ones that we
select on the validate set of Corel5k, meaning that selected
parameters on Corel5k can be well generalized to these two
datasets with the same kinds of image features. And thus
parameter settings of DLSR seem to be less dependent on data-
sets. Moreover, we find that the optimal parameter settings on
NUS-WIDE, which provides different image features, are also
mostly close to the ones that we select on the corresponding
validate set.
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Fig. B.9. Effects of l; k;x in the objective function of image-view linear sparse reconstruction (sub-Fig. B.9(a)–(c)), n in the objective function of tag-view linear sparse
reconstruction (sub-Fig. B.9(d)), and d for combining the image-view and the tag-view reconstructed tagging vectors (sub-Fig. B.9(e)), in terms of AP@3;AR@3 and C@3 on the
test set of the real-world NUS-WIDE, with sub-Fig. B.9(f) giving a sample of optimized a (upper) and b (lower).
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